Saturday, August 1, 2015
speed of light, boltzmann's constant, wikipedia talk edit on natural units
No, there is a fundamental difference between this constants. kb is not like the others because its units are energy per temperature and temperature is a statistical distribution of a specific quantity of kinetic energy, i.e. it is unitless, i.e. dimensionless. Also, c is unitless because meters and seconds have a strict relativistic relationship, i.e. meters=i*c*seconds (see Einstein's "Relativity" appendix 2) so the "unit" of c is 1/i which is not a unit or normal physical dimension, but a mathematical dimension. We can measure other units like G, h, charge, etc, but we define the value of c by either defining seconds or meters in terms of the other. kb is not arbitrarily defined, but it doesn't have units either. I mean, this should be readily apparent from S=kb*ln(states). By replacing all instances of seconds in units with meters/(i*c) the units are more valid. We can't even measure meters, seconds, or mass unless we also specify the frame of reference. We can make units valid for all frames of reference by making meters=i*c*seconds which results in E= -1*mc^2 so we should replace all instances of energy or mass with the negative of the other. This will show F=-1*ma i.e. F+ma=0 which shows this methodology enforces conservation principles (E+mc^2=0 is the cosmological observation that gravitational energy plus mass energy of the Universe is zero). It also directly shows the relationship between energy and momentum: E-i*p=0. You could say "wiki is not a place for original research" but it's all obvious enough that this is not original and should have been published long ago.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment